Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish.
نویسندگان
چکیده
Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.
منابع مشابه
Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish
Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in differ...
متن کاملEya4 regulation of Na+/K+-ATPase is required for sensory system development in zebrafish.
To investigate the mechanisms by which mutations in the human transcriptional co-activator EYA4 gene cause sensorineural hearing loss that can occur in association with dilated cardiomyopathy, we studied eya4 expression during zebrafish development and characterized eya4 deficiency. eya4 morphant fish embryos had reduced numbers of hair cells in the otic vesicle and lateral line neuromasts with...
متن کاملParaneoplastic cerebellar degeneration associated with anti-ITPR1 antibodies
In recent years, the spectrum of anti-Purkinje cell autoimmunity has widened to include novel clinicoimmunologic entities, a number of which have been associated with antibodies targeting intracellular antigens (protein kinase C gamma (PKCg), carbonic anhydrase–related protein (CARP VIII), Ca/Rho GTPase activating protein 26 (ARHGAP26), inositol 1,4,5-trisphosphate receptor 1 (ITPR1), and HOMER...
متن کاملContribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملArl13b and the exocyst interact synergistically in ciliogenesis.
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2013